RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.Sc. FOURTH SEMESTER EXAMINATION, MAY 2019

SECOND YEAR (BATCH 2017-20)

MATHEMATICS (General) Paper : IV

: 28.05.2019 : 11.00 am-2.00 pm Time

Date

[Use a separate Answer Book for each group]

Group - A

Answer any four questions from Question No. 1 to 6 :

- a) Test the convergence of $\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx$ by Comparison test. 1.
 - b) Prove that $\int_{0}^{\infty} e^{-x^2} dx$ converges.
- a) Test for convergence : $\int_{0}^{1} \frac{dx}{x(x+1)}.$ 2.
 - b) Evaluate $\int_{0}^{\infty} e^{-x^2} x^3 dx$. [3+2]
- Show that the area bounded by $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16a^2}{3}$. 3. [5]
- Find the length of the curve $ay^2 = x^3$ between the points x = 0 and x = 5a. [5] 4.
- 5. Find the volume of the solid generated by revolving the curve $r=1-\cos\theta$ about the initial line. [5]

Find the area of the surface formed by the revolution of the curve $x^2 + 4y^2 = 16$ about its major axis. [5] 6.

Answer any two questions from Question No. 7 to 9 :

7. Solve:
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + 2y = x \log x$$
. [5]

8. Solve:
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = xe^x - e^x + 2e^{3x}$$
 [5]

Find the orthogonal trajectories of the family of curves $x^{2/3} + y^{2/3} = a^{2/3}$, where 'a' is a variable 9. parameter. [5]

<u>Group – B</u>

Answer any three questions from Question No. 10 to 14:

- 10. a) Discuss about primary and secondary data and their sources. [2+2+1]
 - Following are the heads of income of Indian Railway Corporation in the year 2015 and 2016: b)

Full Marks: 75

 $[4 \times 5 = 20]$

[3+2]

[3×15=45]

 $[2 \times 5 = 10]$

	2015 (in Crore of Rs.)	2016 (in Crore of Rs.)
Coaching	26	31
Goods	40	39
Others	4.50	3.50

Represent the above data by a bar diagram and analyse your views. [4+1]

c) The expenditure of 1000 families is given as following

Expenditure (in Rs.)	40-59	60-79	80-99	100-119	120-139
No.	50	?	500	?	50
of families					

The median and mean for the distribution are both 87.50. Calculate the missing frequencies. [5]

11. a) Find the Mean Deviation about the Arithmetic Mean of the following series :

Х	10	11	12	13	14
Frequency	3	12	18	12	3

- b) Two variables x and y are related by y=10-3x. If the Standard Deviation of x is 4, what will be the Standard Deviation of y?
- c) Find the coefficient of Correlation from the following data :

Х	1	2	3	4	5	6	7
Y	6	8	11	9	12	10	14

12. a) Construct the price index Number of 2015 with 2000 as Base year from the following data : [5]

Commodity	Price (Rs./kg)		Quantity Sold	Quantity Sold (Kg.)		
	2000	2015	2000	2015		
А	4	5	95	120		
В	60	70	118	130		
С	35	40	50	70		

b) Determine the equation of a straight line which best fits the following data :

Year	2001	2002	2003	2004	2005
Scales (in '00000 Rs.)	35	56	79	80	40

Compute the trend values for all the years from 2001 to 2005.

c) The joint probability distribution of a pair (X,Y) of random variables is given in the following table :

[3+3]

[5]

[5]

[5]

Y X	1	2	3
1	0.1	0.1	0.2
2	0.2	0.3	0.1

Find the conditional distribution of Y , given X = 2.

[4]

[3]

[3]

[5]

[3+4]

- 13. a) If the letters of the word RAMESH be arranged at random, what is the probability that there are exactly 3 letters between A and E. [5]
 - b) If events A^c and B^c are independent, show that so are A and B.
 - c) Find the expectation and variance of binomial (n,p).
- 14. a) If X and Y are two jointly distributed continuous random variables and also they are independent, then prove $E(XY)=E(X) \cdot E(Y)$.
 - b) If minimum daily temperature in a certain city follows a normal distribution with a mean of 59° F and a standard deviation of 9° F, then what would be the distribution of minimum daily temperature in Centigrade scale? Hence find the probability that the minimum daily

temperature of a particular day will be more than 20° C. [Given $\int_{0}^{1} \frac{1}{\sqrt{2\pi}} e^{-z^{2}/2} dz = 0.3413$]. [3+4]

c) If (X_1, X_2, \dots, X_n) be a random sample from a normal population $N(\theta, 1)$, then show that $\left(\overline{X}^2 - \frac{1}{n}\right)$ is an unbiased estimator of θ^2 .

_____× _____